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SUMMARY

A numerical investigation is performed to study the solution of natural and mixed convection flows by
Galerkin-characteristic method. The method is based on combining the modified method of characteristics
with a Galerkin finite element discretization in primitive variables. It can be interpreted as a fractional
step technique where convective part and Stokes/Boussinesq part are treated separately. The main feature
of the proposed method is that, due to the Lagrangian treatment of convection, the Courant–Friedrichs–
Lewy (CFL) restriction is relaxed and the time truncation errors are reduced in the Stokes/Boussinesq
part. Numerical simulations are carried out for a natural convection in squared cavity and for a mixed
convection flow past a circular cylinder. The computed results are compared with those obtained using
other Eulerian-based Galerkin finite element solvers, which are used for solving many convective flow
models. The Galerkin-characteristic method has been found to be feasible and satisfactory. Copyright q
2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Natural and mixed convection flows are encountered in various engineering systems, such as solar
thermal receivers, electronic cooling devices, microwave ovens, crystal growth, fire in buildings,
etc. The governing equations of fluid flow and heat transfer, in most of these problems, are
the incompressible Navier–Stokes/Boussinesq equations. These equations are the subject of very
intensive research activities since they include a wide variety of difficulties which typically arise in
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the computational fluid dynamics. Numerical treatment of these equations often present difficulties
due to their non-linear form, incompressibility condition, presence of the convective term, coupling
between the energy equation and the equations governing the fluid motion. In many thermal
incompressible Navier–Stokes problems, the convective term is distinctly more important than
the diffusive term; particularly when the Rayleigh or Reynolds numbers reach high values, this
convective term is a source of computational difficulties and non-physical oscillations.

There exists a variety of computational methods available in the literature. For instance, ap-
plied to convection-dominated flows, Eulerian methods incorporate some upstream weighting in
their formulations to stabilize the numerical procedure. The most popular Eulerian methods, in
finite element framework, are the streamline upwind Petrov–Galerkin, Galerkin/least-squares and
Taylor–Galerkin methods. All these Eulerian methods are easy to formulate and implement. How-
ever, time truncation errors dominate their solutions and are subjected to Courant–Friedrichs–Lewy
(CFL) stability conditions, which put a restriction on the size of time steps taken in numerical
simulations. Galerkin-characteristic methods (also known by semi-Lagrangian methods in me-
teorological community) on the other hand, make use of the transport nature of the governing
equations. The idea in these methods is to rewrite the governing equations in term of Lagrangian
co-ordinates as defined by the particle trajectories (or characteristics) associated with the problem.
Then, the Lagrangian total derivative is approximated, thanks to a divided difference operator. The
Lagrangian treatment in these methods greatly reduces the time truncation errors in the Eulerian
methods [1]. In addition, these methods are known to be unconditionally stable, independent of
the diffusion coefficient, and optimally accurate at least when the inner products in the Galerkin
procedure are calculated exactly [2].

In Galerkin-characteristic methods, the time derivative and the advection term are combined as
a directional derivative along the characteristics, leading to a characteristic time-stepping proce-
dure. Consequently, the Galerkin-characteristic methods symmetrize and stabilize the governing
equations, allow for large time steps in a simulation without loss of accuracy, and eliminate
the excessive numerical dispersion and grid orientation effects present in many upwind methods
[3, 4]. A Galerkin-characteristic algorithm has been successfully applied to isothermal Navier–
Stokes equations in [5]. The current work presents an extension of the method to thermal viscous
incompressible flows. To the best of our knowledge, there are no detailed computational studies
on natural and mixed convection flows using Galerkin-characteristic methods. The results of such
studies are useful for providing comparative data and developing robust solvers for heat transfer
and fluid flow computations.

A class of Galerkin-characteristic methods has been investigated in References [2, 3, 6, 7], among
others. In [2], a first-order characteristics method combined with finite element method has been
analysed for the isothermal incompressible Navier–Stokes equations. It has been shown that the
method is unconditionally stable provided the characteristics are transported by divergence-free
field that is deduced from the flow velocity. The case where the characteristics are transported by
discrete velocity field which is not divergence-free has been studied in [6]. Analysis of modified
method of characteristics using finite difference discretization has been treated in [3] for convection–
diffusion equations. In the finite difference framework, modified method of characteristics has also
been experimented in [8–10]. Combining modified method of characteristics with spectral method
has been investigated in [7] for hyperbolic problems. In all these references the convergence and
stability of the method are proven under the assumption that all the inner products are calculated
exactly. Furthermore, the evaluation of the fluid particles at the departure points in [2, 3, 6] is
performed using an L2-projection on the finite element space. In many applications, the evaluation
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of integrals in the L2-projection is the most difficult part of these approaches. The current method
differs from the approaches in [2, 3, 6] in the fact that (i) solutions at the characteristic feet are
approximated by interpolation from finite element basis functions and (ii) the time integration is
based on a second-order scheme instead of the first-order backward method used in [2, 3, 6].

The main goal of this work is to combine the modified method of characteristics and finite
element method for solving natural and mixed convection problems. This numerical technique
associates the geometrical flexibility of the finite elements with the stability offered by the modified
method of characteristics. In addition, an advantage of combining finite element method with the
modified method of characteristics is that interpolation procedures at the characteristic feet can be
performed using the finite element basis functions. Obviously, this will reduce the computational
cost and requires less implementation work than using the L2-projection on the corresponding
spaces. Furthermore, the method is suitable for complex geometries, independent of the sizes
and arrangement of the mesh elements, and can easily combine different polynomial orders of
elements.

The results using the Galerkin-characteristic methods are presented for two test problems.
The first example is the natural convection in a squared cavity at Rayleigh numbers up to 108.
The second example is the mixed convection flow past a circular cylinder at several Reynolds
numbers. We present elaborated comparisons, in terms of accuracy and efficiency, between the
Galerkin-characteristic methods and their Eulerian counterparts traditionally used in the literature
for incompressible Navier–Stokes equations.

The present paper is organized as follows. We first give a brief description of the model employed.
In Section 3, we then formulate the Galerkin-characteristic finite element method. Numerical
results are presented in Section 4. Conclusions are drawn in Section 5. For sake of completeness,
the Eulerian-based Galerkin finite element methods used for comparison are described in the
Appendix.

2. THE GOVERNING EQUATIONS

In the present work, we consider convection flows consisting of a Boussinesq approximated viscous
Newtonian fluid flowing in a bounded domain � with boundary � subject to a thermal variation
(T ′H − T ′C), where T ′H and T ′C are temperatures of the hot and cold boundary regions on �. Here
and in what follows primed variables refer to dimensional quantities. The Newtonian assumption
guarantees a linear dependence between the shear stress and the velocity gradient, while the
Boussinesq approximation ensures that the density differences are confined to the buoyancy force
without violating the incompressibility condition. For more details on physical aspects of thermal
flows we refer the reader to [11, 12] and further references can be found therein. In the present
work, we consider the unsteady Navier–Stokes/Boussinesq equations to be solved for the velocity
field u′, the pressure p′ and the temperature T ′. The governing equations are:
continuity equation:

∇ · u′ = 0 (1)

momentum equation:

�∞
(

�u′

�t ′
+ u′ · ∇u′

)
+∇ p′ = ��u′ + �∞(1− �′(T ′ − T ′∞))g′ (2)
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energy equation:

�∞cp
(

�T ′

�t ′
+ u′ · ∇T ′

)
= ��T ′ (3)

where �∞ is the reference density, � the dynamic viscosity, cp the specific heat at constant pressure,
g′ the gravity force, �′ the coefficient of thermal expansion and � the thermal diffusivity coefficient.
Equations (1)–(3) can be rewritten in dimensionless form by introducing the following variables:

x= x′

x∞
, t = �t ′

x2∞
, u= x∞u′

�
, p= x2∞ p′

�∞�2

g= x∞g′

�2
, T = T ′ − T∞

TH − TC
, �= �′(TH − TC)

where the subscript ‘∞’ indicates the reference quantities. We also define the kinematic viscosity
�, the Reynolds number Re, the Prandtl number Pr and the Rayleigh number Ra as

�= �

�∞
, Re= u∞x∞

�
, Pr= �

�
, Ra=Pr

|g′|�′(T ′H − T ′C)x3∞
�2

(4)

Hence, for natural convection, Equations (1)–(3) can be rewritten in non-dimensionless transport
form as

∇ · u= 0

Du
Dt
+∇ p − Pr�u= Pr Ra T e

DT

Dt
− �T = 0

(5)

For mixed convection, an analogous dimensionalization of Equations (1)–(3) gives

∇ · u= 0

Du
Dt
+∇ p − 1

Re
�u= T e

DT

Dt
− 1

Pr Re
�T = 0

(6)

In (5) and (6), e= (0, 1)T is the unit vector in direction of gravity and Dw/Dt is the material
derivative of any physical variable w defined by

Dw

Dt
= �w

�t
+ u · ∇w (7)

Note that the coupling in (5) involves the Rayleigh number Ra for natural convection, while the
coupling in (6) involves the Reynolds number Re for mixed convection. The Rayleigh and Reynolds
numbers, which are the parameters of interest, are usually used to measure the relative importance
of convection compared with diffusion in Equations (5) and (6).
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Boundary and initial conditions have to be inserted in Equations (5) and (6) to provide a
well-posed mathematical problem. They strongly depend on the problem under consideration.
For instance, in most natural convection problems, no-slip boundary conditions are applied for
the velocity field, Dirichlet boundary conditions at hot and cold regions on the boundary, and
Neumann boundary conditions on the adiabatic regions, i.e.

u= 0 on �

T = TD on �D

n · ∇T = 0 on �N

(8)

where n is the unit outward normal on the boundary, �D and �N are the portions of the boundary
�=�D ∪�N subjected to Dirichlet and Neumann boundary conditions, respectively. Here, TD= TC
at the cold region of �D and TD= TH at the hot region of �D. Notice that, other boundary
conditions for natural and mixed convection can be also incorporated in our formulation without
major conceptual modifications.

3. GALERKIN-CHARACTERISTIC METHOD

The emphasis in the current work is on the characteristic treatment of convection. This can
be accomplished within the framework of time-splitting schemes for time-dependent problems.
Therefore, the proposed Galerkin-characteristic method is described for time-dependent problems
even though, it may only be used as a means of reaching the steady-state solution. The temporal
accuracy of the method depends on the discretization of the characteristic curves as well as
the temporal discretization of the governing equations. Here, we consider second-order schemes
for both discretizations. In addition, we formulate our Galerkin-characteristic method only for
the natural convection equations (5) and its application to the mixed convection problem (6) is
straightforward.

The numerical method we propose for approximating solutions to Equations (5) can be
interpreted as a fractional step technique where the convective part is decoupled from the Stokes/
Boussinesq part in the temporal discretization. Thus, at each time step the new velocity, temperature
and pressure are updated by solving the convection equations

�u
�t
+ u · ∇u= 0

�T
�t
+ u · ∇T = 0

(9)

then the Stokes/Boussinesq equations

∇ · u= 0

�u
�t
+∇ p − Pr�u= Pr Ra T e

�T
�t
− �T = 0

(10)
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Note that the energy equation in (10) has been decoupled from the momentum equation, which
can be solved separately once the convective step (9) is approximated.

In order to formulate our method we require a discretization of the space domain �̄=�∪�.
To perform this step, we proceed as follows. Given h0, 0<h0<1, let h be a space discretization
parameter such that 0<h<h0. We generate a quasi-uniform partition �h ⊂ �̄ of small elements
Kj that satisfy the following conditions:

(i) �̄=⋃Ne
j=1Kj , where Ne is the number of elements of �h .

(ii) If Ki and Kj are two different elements of �h , then

Ki ∩Kj =

⎧⎪⎨
⎪⎩
Pi j a mesh point, or

�i j a common side, or

∅ empty set

(iii) There exists a positive constant k such that for all j ∈ {1, . . . ,Ne}, d j/h j>k (h j�h), where
d j is the diameter of the circle inscribed in Kj and h j is the largest side of Kj .

The conforming finite element spaces for velocity/temperature and pressure that we use are
Taylor–Hood finite elements Pm/Pm−1 (or Qm/Qm−1), i.e. polynomial of degree m�2 for the
velocity/temperature and polynomial of degree m−1 for the pressure on simplices (or quadrilater-
als), respectively. It is known that for such elements the discrete velocity/temperature and pressure
fields satisfy the inf–sup condition. This property guarantees the stability and convergence of the
approximate solutions, compare [13, 14]. These elements can be defined as

vh = {uh ∈C0(�̄): uh |Kj ∈ S(Kj )× S(Kj ), ∀Kj ∈�h}
Vh = {Th ∈C0(�̄): Th |Kj ∈ S(Kj ), ∀Kj ∈�h}
Sh = {ph ∈C0(�̄): ph |Kj ∈ R(Kj ), ∀Kj ∈�h}

where S(Kj ) and R(Kj ) are polynomial spaces defined in Kj as S(Kj )= Pm(Kj ) for simplices,
S(Kj )= Qm(Kj ) for quadrilaterals, R(Kj )= Pm−1(Kj ) for simplices and R(Kj )=
Qm−1(Kj ) for quadrilaterals.
Next, we discretize the time interval into subintervals [tn, tn+1] with length �t and tn = n�t . We

use the notation wn to denote the value of a generic function w at time tn . Hence, we formulate
the finite element solutions to un(x), T n(x) and pn(x) as

unh(x)=
M∑
j=1

Un
j � j (x), T n

h (x)=
M∑
j=1

Tn
j � j (x), pnh(x)=

N∑
j=1

Pn
j � j (x) (11)

where M and N are, respectively, the number of velocity/temperature and pressure mesh points
in the partition �h . The functions Un

j , T
n
j and Pn

j are the corresponding nodal values of unh(x),
T n
h (x) and pnh(x), respectively. They are defined as Un

j =unh(x j ), Tn
j = T n

h (x j ) and Pn
j = pnh(y j ),

where {x j }Mj=1 and {y j }Nj=1 are the set of velocity/temperature and pressure mesh points in the

partition �h , respectively, so that N<M and {y1, . . . , yN } ⊂ {x1, . . . , xM }. In (11), {� j }Mj=1 and

{� j }Nj=1 are the set of global nodal basis functions of vh and Sh , respectively, characterized by the
property �i (x j )= �i j and �i (y j )= �i j with �i j denoting the Kronecker symbol.
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3.1. The convection fractional step

To solve the convection equations (9) two steps are required, namely the computation of character-
istic trajectories and the interpolation procedure. Both steps are crucial to the overall accuracy of
Galerkin-characteristic methods. For each mesh point x j , j = 1, . . . , M , the characteristic curves
Xn
hj =Xh(x j , tn+1; tn) associated with (7) are the unique solutions of the ordinary differential

equation

dXh(x j , tn+1; t)
dt

= uh(t,Xh(x j , tn+1; t))
Xh(x j , tn+1; tn+1)= x j

(12)

where uh(t, x) is the approximate flow velocity at time t . The solutions of (12) are known by
departure points at time t of a fluid particle passing through the point x j at time t = tn+1. To compute
the departure points {Xn

hj }, j = 1, . . . , M , we use the algorithm proposed by Temperton and
Staniforth [1] together with an efficient search-locate algorithm developed by Allievi and Bermejo
[15]. The first algorithm accurately solves (12) with a second-order scheme in unstructured meshes,
while the second algorithm efficiently identifies the mesh element of �h where the departure point
is located.

Let us write the solution of (12) as

Xn
hj = x j − �hj (13)

where the displacement �hj is calculated by the iterative procedure

�(k+1)
hj = �t

2

[
3unh

(
x j − 1

2
�(k)
hj

)
− un−1h

(
x j − 1

2
�(k)
hj

)]
, k= 0, 1, . . . (14)

with

�(0)
hj =

�t

2
[3unh(x j )− un−1h (x j )]

To compute the velocity values unh(x j − 1
2 �(k)

hj ) and un−1h (x j − 1
2 �(k)

hj ) we first identify, using the

search-locate algorithm, the mesh element K̂j where x j − 1
2 �(k)

hj resides. Then a finite element

interpolation on K̂j is carried out according to (11). In our numerical results, the iterations in
(14) were continued until the trajectory changed by less than 10−5. However, in practice it is not
recommended to repeat the iteration process more than a few times due to efficiency considerations.

Assuming that, for all j = 1, . . . , M , the pairs (Xn
hj , K̂j ) and the mesh point values {Un

j ,Tn
j }

are known, we compute the values {Û n
j , T̂

n
j } as

Û n
j :=unh(X

n
hj )=

M∑
k=1

Uk�k(X
n
hj ), T̂n

j := T n
h (Xn

hj )=
M∑
k=1

Tk�k(X
n
hj ) (15)

Then, the solution {ûnh(x), T̂ n
h(x)} of the convection equations (9) is obtained as

ûnh(x)=
M∑
j=1

Û n
j � j (x), T̂ n

h(x)=
M∑
j=1

T̂n
j � j (x) (16)
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The above convection fractional step follows the flow by tracking the characteristics backward
from a point x in a fixed grid at the time step tn+1 to a point X at the previous time step tn . Hence,
the present procedure avoids the grid distortion problems present in forward tracking methods.
We should mention that the conventional Galerkin-characteristic methods in [2, 3] suggest the
evaluation of ûnh and T̂ n

h in (16) using an L2-projection on the space of the velocity vh and of
temperature Vh , respectively. In many applications, the evaluation of integrals in the L2-projection
is difficult and computationally very demanding. An alternative approach was studied in [4] for
convection–diffusion problems and was recently proposed by Seaı̈d and El-Amrani [16] for the
shallow water equations.

3.2. The Stokes/Boussinesq fractional step

To perform the Stokes/Boussinesq step (10) we present a projection-type method and a direct-type
method. In both methods, the time integration is carried out using a second-order 	-scheme. First,
we formulate the projection-type method.

3.2.1. Galerkin-characteristic projection (GCPR) scheme. The procedure to advance the solution
of (10) from a time tn to the next time tn+1 can be carried out in the following steps:

1. Solve for T n+1

T n+1 − T̂ n

�t
− �T n+	 = 0 in �

T n+1 = TD on �D

n · ∇T n+1 = 0 on �N

(17)

2. Solve for ūn+1

ūn+1 − ûn

�t
+ 
∇ pn − Pr�ūn+	 = Pr Ra T n+1e in �

ūn+1 = 0 on �

(18)

3. Solve for p̄ and un+1

un+1 − ūn+1

�t
+∇ p̄= 0 in �

∇ · un+1 = 0 in �

n · ∇un+1 = 0 on �

(19)

4. Update pn+1

pn+1= 
pn + (1+ 
) p̄

In (17) and (18), T n+	 and ūn+	 are defined as

T n+	= 	T n+1 + (1− 	)T̂ n, ūn+	= 	ūn+1 + (1− 	)ûn
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with 	 and 
 are fixed parameter in [0, 1]. In our computations, we used 	= 1
2 and 
= 1. Note

that, the solution of (19) leads to a pressure-Poisson problem for p̄ of the form

� p̄= 1

�t
∇ · ūn+1 in �

n · ∇ p̄= 0 on �
(20)

Note that no outer iterations are required to compute the solution in the GCPR method within a time
step. Another option is to solve the full Stokes/Boussinesq problem (10) for velocity/temperature
and pressure directly at each time step using a conjugate-gradient method. This direct-type proce-
dure can be viewed as a penalty method. It involves outer iterations and has the ability to enforce
exactly the divergence-free constraint for finite values of penalty parameter, compare [8, 17]. Its
formulation is given below.

3.2.2. Galerkin-characteristic conjugate gradient (GCCG) scheme. Given a tolerance � and using
superscripts in parenthesis to indicate the iteration numbers, the GCCG algorithm is carried out in
the following steps:

1. Solve for T n+1
h ∈ Vh such that for all vh ∈ V 0

h

1

�t

∫
T n+1
h vh d�+ 1

2

∫
∇T n+1

h · ∇vh d�= 1

�t

∫
T̂ n
hvh d�−

1

2

∫
∇ T̂ n

h · ∇vh d� (21)

subject to boundary conditions

T n+1
h = TD on �D

n · ∇T n+1
h = 0 on �N

2. Given p(0)
h = pnh , solve for u(0)

h ∈ vh such that for all vh ∈ v0h
1

�t

∫
u(0)
h vh d�+ Pr

2

∫
∇u(0)

h · ∇vh d�=
1

�t

∫
ûnhvh d�

−Pr
2

∫
∇ûnh · ∇vh d�+

∫
p(0)
h ∇ · vh d�

+Pr Ra
2

∫
(T n+1

h + T̂ n
h)vh · e d� (22)

subject to boundary conditions

u(0)
h = 0 on �

Then, compute

r (0)
h =∇ · u(0)

h

3. Solve for �(0)
h ∈ Sh such that for all �h ∈ Sh∫

�
∇�(0)

h · ∇�h d�=
∫

�
r (0)
h �h d�
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and set

g(0)
h =

1

�t
�(0)
h +

Pr

2
r (0)
h , �(0)

h = g(0)
h

For m�0, assume that p(m)
h , u(m)

h , r (m)
h , g(m)

h , w
(m)
h are known, we compute p(m+1)

h , u(m+1)
h ,

r (m+1)
h , g(m+1)

h and w
(m+1)
h as follows:

(a) Solve for ūh ∈ v0h such that for all vh ∈ v0h
1

�t

∫
ū(m)
h vh d�+ Pr

2

∫
∇ū(m)

h · ∇vh d�=
∫

�(m)
h ∇ · vh d� (23)

and set

r̄ (m)
h =∇ · ū(m)

h

(b) Compute

�m =
∫
r (m)
h g(m)

h d�∫
r̄ (m)
h �(m)

h d�

(c) Set

p(m+1)
h = p(m)

h − �m�(m)
h

u(m+1)
h =u(m)

h − �m ū
(m)
h

r (m+1)
h = r (m)

h − �mr̄
(m)
h

(d) Solve for �̄(k)
h ∈ Sh such that for all �h ∈ Sh

∫
∇�̄(m)

h · ∇�h d�=
∫

r̄ (m)
h �h d�

and set

g(m+1)
h = g(m)

h − �m

(
1

�t
�(m)
h +

Pr

2
r (m)
h

)

i. If
∫
r (m+1)
h g(m+1)

h d�/
∫
r (0)
h g(0)

h d���
then

pn+1h = p(m+1)
h , un+1h =u(m+1)

h

stop.
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ii. Else, compute

m =
∫
r (m+1)
h g(m+1)

h d�∫
r (m)
h g(m)

h d�
, �(m+1)

h = g(m+1)
h + m�(m)

h

change m←−m + 1, return to step (a) and repeat.
iii. End if

It is noteworthy that the finite element discretization of Equations (17)–(23) is trivial and is omitted
here. It is described in many text books, compare [18] among others.

4. NUMERICAL RESULTS

We present numerical results for two benchmark problems in natural convection and mixed con-
vection. The main goals of this section are to illustrate the numerical performance of the Galerkin-
characteristic algorithms described above and to verify numerically their capabilities to solve
natural and mixed convection problems. In all the computations reported herein, unless specified,
the time step �t is fixed to 0.1 and all the linear systems of algebraic equations are solved using
the conjugate gradient solver with incomplete Cholesky decomposition (ICCG). In addition, all
stopping criteria for iterative solvers were set to 10−5, which is small enough to guarantee that
the algorithm truncation error dominated the total numerical error. In our Galerkin-characteristic
algorithms, the number of iterations to reach this tolerance do not overpass 15 iterations for the
velocity/temperature and 40 iterations for the Poisson problems for the pressure in both natural
and mixed convection problems. We should note that the conjugate gradient ICCG solver for linear
systems and GCCG method are completely different.

For comparison reasons, we compare the results obtained using our Galerkin-characteristic
algorithms to those obtained using Eulerian-based Galerkin finite element methods widely used in
the literature to solve incompressible Navier–Stokes equations in primitive variables. Hereafter, we
shall use the terminology GCCG, GCPR, EGPR, EGS2 and EGS3 to refer to Galerlin-characteristic
conjugate gradient method, Galerlin-characteristic projection method, Eulerian-based projection
method, Eulerian-based Galerkin splitting with two stages and Eulerian-based Galerkin splitting
with three stages, respectively. For completeness, a brief formulation of EGPR, EGS2 and EGS3
methods is given in the Appendix.

All the computations are made on a Pentium PC with one processor of 518MB of RAM and
166MHz. The codes only take the default optimization of the machine, i.e. they are not parallel
codes.

4.1. Natural convection in a squared cavity

We consider the canonical problem of buoyancy-driven flow in a squared cavity with vertical side
walls differentially heated. The flow domain �=[0, 1]× [0, 1] with the left and right vertical
walls are maintained at fixed temperatures T = TH and T = TC, respectively. The bottom and top
horizontal walls are adiabatic. No-slip boundary conditions are imposed for the fluid flow at all
walls. The literature is abundant for this natural convection flow which shows thermal phenomena
at many scales depending on Ra numbers, see for example [19–21]. The local Nusselt number at
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Table I. Spatial error-norms for the natural convection at time t = 300.

Errors in T Errors in u

Ra h L∞-error L1-error L2-error L∞-error L1-error L2-error

103 1/32 0.10781E−00 0.93110E−01 0.97201E−01 0.16976E−00 0.11053E−00 0.13964E−00
1/64 0.29087E−01 0.23931E−01 0.25508E−01 0.46764E−01 0.28805E−01 0.36900E−01
1/128 0.73225E−02 0.58598E−02 0.63329E−02 0.11936E−01 0.71517E−02 0.92251E−02
1/256 0.17560E−02 0.13574E−02 0.14874E−02 0.29228E−02 0.16798E−02 0.22277E−02

107 1/32 0.11390E−00 0.10322E−00 0.10975E−00 0.19205E−00 0.13861E−00 0.17702E−00
1/64 0.31814E−01 0.28043E−01 0.30233E−01 0.54016E−01 0.38183E−01 0.49445E−01
1/128 0.81208E−02 0.70595E−02 0.76638E−02 0.13883E−02 0.96791E−02 0.12621E−02
1/256 0.20302E−02 0.17285E−02 0.19027E−02 0.34709E−02 0.23864E−02 0.31334E−02

the hot wall NuH and the cold wall NuC are calculated as

NuH=− �T
�x

∣∣∣∣
heated wall

and NuC=− �T
�x

∣∣∣∣
cold wall

The main issues we wish to address in this example are concerned with the capabilities of the
GCCG scheme to accurately approximate numerical solutions to this well-established test problem.
The efficiency of the GCCG scheme is also examined by comparing the computational work of the
obtained simulations with those obtained using the GCPR, EGPR, EGS2 and EGS3 methods. First,
we examine the grid convergence in the GCCG scheme for the proposed model. To this end, we
report in Table I the relative spatial error-norms varying in the mesh size h and keeping �t fixed.
All the errors are measured by the difference between the pointvalues of the reference solution
and the reconstructed pointvalues of the computed solutions. The reference solution corresponds
to the solution obtained by the GCCG scheme in the fine mesh with h= 1

512 . As expected, for the
two selected Ra numbers, the error-norms decay as the mesh size h decreases. A slow decay rate
has been detected in the error-norms for the velocity variable. It is clear that the GCCG scheme
shows a second-order behaviour in space for the considered natural convection.

To check the grid independence of solutions in the GCCG scheme we display in Figure 1 the
local Nusselt number at the hot wall obtained for different mesh levels. We have observed that for
low Ra numbers, the grid independence in the computed solution is achieved on meshes which are
coarser than those required for high Ra numbers. It is easy to verify that for the last two mesh levels
the differences in error-norms reported in Table I and the plots in Figure 1 are always very small.
These results ensure grid independence of the numerical results. Hence, our next computations
are realized with a structured triangulation P2/P1 with 12 800 elements and h= 1/160. Flow and
temperature fields in the cavity and Nusselt numbers are examined for ranges of Rayleigh number
from 103 to 108 with a Prandtl number Pr= 0.71.

In Figure 2, we display the isotherms, vorticity contours, velocity vectors, and streamlines
obtained using the GCCG method for different Rayleigh numbers at time t = 300. At this time, the
flow has all the characteristic features of the steady state. As can be seen, the flow is symmetric
with respect to the cavity centre for all the Rayleigh numbers. At low Ra numbers, the flow
exhibits a central vortex and the heat transfer is dominated by conduction regime. At Ra= 105, the
vortex breaks into two vortices moving towards the vertical walls. At high Rayleigh numbers, the
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Figure 1. Local Nusselt number at the hot wall, NuH, at different mesh
levels for Ra= 103 (left plot) and Ra= 107 (right plot).

flow becomes fully convection dominated, the cold fluid is entrained right to the hot wall where
high-temperature gradients are created. There is excellent agreement between these results and
those published in [19–21]. Note that the performance of our GCCG method is very attractive
since the computed solutions remain stable and highly accurate even when coarse meshes are
used without solving non-linear problems or requiring special projection or pressure correction
procedures.

The u-velocity component along the vertical and the v-velocity component along the horizontal
centre lines are shown in Figure 3 for all the values of Rayleigh numbers. A cross-section of
the temperature at the horizontal centre line is shown in Figure 4. The boundary layers for the
velocity components and temperature field can be observed clearly. As expected, the velocity and
temperature profiles change from curved at lower values of Ra to linear for higher Ra values.
These results agree well with those from previous studies in [19–21].

Figure 5 presents the distribution of the local Nusselt number at the cold wall. The distribution
of the local Nusselt number at the hot wall is shown in Figure 6. The features of distribution at
low Rayleigh numbers differ from that at high Rayleigh numbers. We observe that, the rate of
heat transfer from the wall to the fluid, and vice versa, increases with the Rayleigh number. At
low Rayleigh number, conduction heat transfer dominates and the heat transfer rate from the walls
is very little. The maximum local Nusselt number is located at the bottom of the hot wall and
minimum at the top wall. At the cold wall, the minimum local Nusselt number is located at the
bottom and maximum at the top wall. Similar aspects have been reported in References [19–21].
Furthermore, to quantitatively assess the accuracy of the GCCG method, we display in Table II
comparisons between published results for maximum horizontal velocity at the cavity mid-width
and results obtained with our GCCG method. The obtained results for vertical velocity at the cavity
mid-height are listed in Table III. The results mostly agree with all the model results in References
[19–21]. As is obvious from the tables, the small difference to other methods can be attributed to
the mesh size used in the present investigation.
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Figure 2. Isothermal lines (first column), vorticity contours (second column), velocity field (third column)
and streamlines (fourth column) obtained using GCCG method for the natural convection.
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Figure 3. Variation of u-velocity at x = 0.5 (left plot) and v-velocity at y= 0.5 (right plot).
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Figure 4. Variation of temperature at mid-height cavity y= 0.5.

In order to quantify the GCCG results we summarize in Table IV maximum and minimum
of Nusselt number at the hot wall NuH, u and v velocities. The results obtained using the other
methods are also included in this table. As can be seen, GCCG and EGS3 methods produce nearly
identical results which compare satisfactorily with those published in [22]. The differences in EGS2
and EGS3 schemes are also modest. However, the simulated results from the EGPR scheme and
the GCPR scheme are worse than those of the GCCG scheme and the EGS3 scheme, especially
the EGPR scheme blows up at high Rayleigh numbers.
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Figure 5. Local Nusselt number at the cold wall, NuC, for the natural convection.
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Figure 6. Local Nusselt number at the hot wall, NuH, for the natural convection.

Table II. Comparison between published results for maximum horizontal velocity u at the
cavity mid-width x = 0.5 and results obtained with GCCG method. Number in parenthesis

corresponds to the y co-ordinate.

Ra Reference [19] Reference [20] Reference [21] Present work

103 3.634 (0.813) 3.68 (0.817) 3.6493 (0.8125) 3.6450 (0.815)
104 16.2 (0.823) 16.1 (0.817) 16.1798 (0.8235) 16.0891 (0.818)
105 34.81 (0.855) 34.0 (0.857) 34.7741 (0.8535) 34.0065 (0.851)
106 65.33 (0.851) 65.4 (0.875) 64.6912 (0.8460) 65.3390 (0.860)
107 NA 139.7 (0.919) 145.2666 (0.8845) 145.0317 (0.905)
108 NA NA 283.689 (0.9455) 292.8106 (0.943)
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Table III. Comparison between published results for maximum vertical velocity v at
the cavity mid-height y= 0.5 and results obtained with GCCG method. Number in

parenthesis corresponds to the x co-ordinate.

Ra Reference [19] Reference [20] Reference [21] Present work

103 3.679 (0.179) 3.73 (0.1827) 3.6962 (0.1790) 3.6981 (0.180)
104 19.51 (0.12) 19.9 (0.1246) 19.6177 (0.1195) 19.8955 (0.119)
105 68.22 (0.066) 70.0 (0.068) 68.6920 (0.0665) 69.7392 (0.069)
106 216.75 (0.0387) 228 (0.039) 220.8331 (0.0380) 226.4970 (0.040)
107 NA 698 (0.0235) 703.2536 (0.0215) 707.6305 (0.022)
108 NA NA 2223.4424 (0.013) 2269.7614 (0.013)

Table IV. Comparison of maximum and minimum of Nusselt number at
hot wall NuH, u and v velocities.

minNuH maxNuH min u min v max u max v

GCCG 0.6917 1.5055 −0.1152 −0.1168 0.1152 0.1168
GCPR 0.6982 1.5002 −0.1148 −0.1162 0.1148 0.1162

Ra= 103 EGS2 0.6915 1.5058 −0.1154 −0.1169 0.1154 0.1169
EGS3 0.6916 1.5056 −0.1153 −0.1169 0.1153 0.1169
EGPR 0.6949 1.4976 −0.1156 −0.1170 0.1156 0.1170

GCCG 0.7485 7.7257 −0.1198 −0.2167 0.1197 0.2167
GCPR 0.7480 7.6678 −0.1109 −0.2168 0.1109 0.2168

Ra= 105 EGS2 0.7285 7.7257 −0.1098 −0.2167 0.1098 0.2167
EGS3 0.7285 7.7258 −0.1098 −0.2167 0.1098 0.2167
EGPR 0.7259 7.7211 −0.1100 −0.2168 0.1100 0.2168

GCCG 1.9587 93.8349 −0.0318 −0.2217 0.0318 0.2217
GCPR 1.8467 91.3337 −0.0299 −0.2263 0.0300 0.2266

Ra= 108 EGS2 1.9141 93.5674 −0.0318 −0.2217 0.0318 0.2217
EGS3 1.9586 93.8349 −0.0319 −0.2217 0.0319 0.2217
EGPR — — — — — —

Our next concern is to ascertain the efficiency of the GCCG scheme. To this end we list in Table V
the CPU time for different Ra numbers. Timings, in minutes, include all aspects of computations
(grid generation, reconstruction of matrices and solution of linear systems). As clearly shown in
the table, for each method, the CPU time increases with Ra number. For a given value of Ra
number, the CPU times are comparable for GCCG and EGPR methods. At all Ra numbers, the
GCPR scheme performs best, while the EGPR scheme does the best only at low Ra number.
However, at high Ra numbers, the EGPR method goes unstable (Tables IV and V corresponds to
runs where the EGPR scheme becomes unstable). At Ra= 107 and 108, the CPU time exhibits
an increase for all the methods. It is to be remarked that in the GCCG scheme for Ra= 108,
the number of iteration required in the ICCG solver (solver of linear systems) at each time step
starts at about 15–10 but it promptly decreases to 2–3, even 1, long before steady state is reached.
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Table V. Comparison of computational times (in minutes)
for the natural convection problem.

Ra GCPR GCCG EGPR EGS2 EGS3

103 158 234 272 408 471
104 128 180 190 272 325
105 111 147 143 210 240
106 89 117 125 186 251
107 83 115 — 189 295
108 98 144 — 286 416

This later behaviour deteriorates in the Eulerian-based methods where the number of iterations in
ICCG solver can increase about five times more than in GCCG method.

4.2. Mixed convection past a circular cylinder

To demonstrate the capability of the Galerkin-characteristic methods for a more complex problem,
we consider the problem of a viscous thermal flow in a channel containing a circular cylinder.
The isothermal version of this example has been the subject of many numerical validations for
laminar flows, see for instance [23–25]. Here, a viscous incompressible flow at cold temperature
TC enters through the left boundary of channel with uniform velocity u∞= 1 while both, the
upper and lower, walls are kept at hot temperature TH. The fluid flows past a circular cylinder with
diameter D= 1 and also at hot temperature TH. The Reynolds number for this problem is defined
as Re= Du∞/�. At the downstream boundary we impose the pseudo-stress condition

s :=− pn+ �
�u
�n
= 0

On the remaining boundaries we use the condition u= 0. A similar test problem has been inves-
tigated by Kieft et al. [26]. We perform computations with the triangular finite element P2/P1
using the unstructured mesh depicted in Figure 7. The mesh contains 2724 triangles resulting in
5628 velocity/temperature nodes and 1452 pressure nodes. Simulations were performed for air
(Pr= 0.71) at different Reynolds numbers ranging from 20 to 200, above which the wake behind
the cylinder becomes unsteady and Karman vortex shedding appears.

In contrast to the previous example where the cavity is bounded by rigid and fixed walls, the
considered mixed convection is solved in a open domain. As a consequence, the later flow is more
difficult to handle; the results shown here illustrate the robustness of the GCCG method. On the
other hand, unlike the previous test example, the mixed convection is a problem unsteady in nature
and therefore, good numerical accuracy is required in order to capture the different phenomena
present in the evolving solution. This problem is also used to test the accuracy of the GCCG scheme
in time. Table VI presents the relative L2-error in the time interval (0, T ] for the temperature and
u-velocity variables at Re= 40 and 100. The relative L2-error is defined by

‖w − wref‖L2((0,T ])
‖wref‖L2((0,T ])
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Figure 7. Computational mesh for mixed convection flow past a cylinder.

Table VI. The relative L2-error for the mixed convection at time t = 50.

Re= 40 Re= 100

�t Temperature u-velocity Temperature u-velocity

0.1 0.53719E−01 0.79631E−01 0.60695E−01 0.91204E−01
0.05 0.13429E−01 0.20046E−01 0.15279E−01 0.23119E−01
0.025 0.30894E−02 0.47084E−02 0.36642E−02 0.57002E−02
0.0125 0.66774E−03 0.10535E−02 0.80860E−03 0.13204E−02
0.00625 0.11561E−03 0.19961E−03 0.15750E−03 0.27567E−03

where wref is the reference solution computed by the GCCG scheme on the same mesh using
a very small time step of �t = 0.0005. The clear indication from Table VI is that the L2-error
decays as the time step �t decreases. It is evident that the GCCG method reaches the expected
second-order accuracy in time. In addition, if instead of computing the approximate convergence
rate between two consecutive time refinings, one approximates the convergence rate between time
level of �t = 0.1 and 0.00625, the results for the temperature variable are 2.21 at Re= 40 and 2.14
at Re= 100. The results for the u-velocity variable are 2.16 at Re= 40 and 2.09 at Re= 100. This
clearly demonstrates the second-order accuracy of the GCCG algorithm.

In Figure 8, we present the results obtained by the GCCG scheme for different Reynolds
numbers. Here, we show the distribution of stream function, pressure, temperature and velocity
vectors. The figure indicates circulation zones moving downstream. The results also indicate that
as the Re increases, the size of the recirculation zone increases with the flow exhibiting eddies
with different magnitudes and separating shear layers. The results agree qualitatively well with the
published data on flow past a cylinder. We can see the small complex structures of the flow being
captured by the GCCG scheme.

A numerical comparison between the GCCG scheme and the other methods was also carried
out for this example. The results are quantified by computing the force coefficients

Lift coefficient= Fx
1
2 �∞u2∞D

=
∫ 2�

0
�2 d�, drag coefficient= Fy

1
2 �∞u2∞D

=
∫ 2�

0
�1 d�
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Figure 8. Stream function (first column), pressure distribution (second column), temperature field (third
column) and velocity vectors (fourth column).
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Figure 9. Drag and lift coefficients for the mixed convection at different Reynolds numbers.

where s= (�1, �2)T is the traction vector on the cylinder boundary �. The evolution in time of these
force coefficients is shown in Figure 9 for the selected Reynolds numbers Re= 60, 100 and 200
at time t = 200. The results by EGPR scheme are not included in this figure because the scheme
behaves badly for this mixed convection problem. As can be seen, at earlier time of simulation the
lift coefficient is essentially zero, followed later by an oscillatory behaviour of rapidly increasing
amplitude. Similarly, after an initial stabilization phase, the fluctuations in the drag coefficient
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Table VII. Comparison of computational times (in
minutes) for the mixed convection problem.

Re EGPR GCPR GCCG EGS2 EGS3

20 7 6 9 19 22
40 9 7 10 21 27
60 12 10 17 36 39
80 15 13 25 41 51

100 19 15 32 49 63
200 27 21 44 65 85

Table VIII. Strouhal number for the mixed convection
at Re= 100.

GCPR GCCG EGS2 EGS3

0.175 0.175 0.194 0.194

show a steady pattern along the considered time interval. The drag coefficient exhibits fluctuations
of higher frequency than the lift coefficient. The periodic character of the coefficients in the figure
should be noted. A dimensionless number, used in experimental studies, to quantify this periodic
feature is the Strouhal number, St= D/u∞T, where T is the time period. In Table VIII, we list
the obtained Strouhal number for this test example at Re= 100 using the considered methods. In
these results, T is the period of oscillation calculated from the time evolution of the drag and lift
coefficients in Figure 9. We should mention that the corresponding experimental Strouhal number
for the isothermal case is 0.16, see for example [25].

A simple inspection of Figure 9 shows that the EGS2 scheme exhibits the highest amplitudes in
the drag and lift coefficients. The EGS3 result lies between the GCCG scheme and EGS2 scheme.
The GCCG method appears to be superior to the Eulerian-based methods and does not exhibit
the excessive dissipation reported in the Eulerian-based methods. The GCCG Strouhal number in
Table VIII is identically equivalent to that of GCPR scheme, while it is inferior to the EGS2 and
EGS3 schemes. Note that, the GCCG method produces reasonable Strouhal number when it is
compared with the experimental one in [25] for isothermal case.

Table VII contains computational statistics for the mixed convection at the considered Reynolds
numbers and at time t = 200. As in the case of natural convection, the overall computational work
increases as the Reynolds number is increased. The clear indication from this table is that the CPU
time used by the GCCG scheme approximately doubles when using the EGS3 scheme for the
same Re number. The EGS3 method displays CPU times of roughly four times more than GCPR
method.

From the simulated results of the considered schemes examined herein for the mixed convection
flow past a cylinder, one may conclude the following: (i) the EGPR scheme fails to solve this test
problem; (ii) the GCCG scheme is more accurate than GCPR scheme; (iii) the EGS2 scheme is
comparable with the EGS3 scheme, and both provide convincing computed results in spite of some
degree of numerical diffusion; (iv) the computational cost required for EGS2 and EGS3 schemes
is much larger than the one required for GCPR and GCCG methods in a simulation with the same
Re number.
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5. CONCLUSIONS

In this article we have presented a class of Galerkin-characteristic methods for solving natural
and mixed convection problems. The methods combine the modified method of characteristics for
time integration with Galerkin finite element for space discretization. The methods are formulated
for the governing equations in primitive variables. We have considered both a projection-type
and a direct-type procedures for the generalized Stokes/Boussinesq problem. A comparison with
other Eulerian-based Galerkin finite element methods demonstrates the feasibility of the present
Galerkin-characteristic algorithms to solve natural convection and mixed convection flows at high
Rayleigh and Reynolds numbers, respectively.

The favourable performance of the present Galerkin-characteristic algorithms has been demon-
strated using the example of natural convection in a squared cavity and the example of mixed
convection flow past a circular cylinder. Numerical comparisons have been carried out for all the
considered methods in terms of streamlines, velocity vectors, isotherms, vorticity contours and
local Nusselt number plots. In both examples, the direct-type Galerkin-characteristic method
shows high accuracy than the projection-type Galerkin-characteristic method. The results ob-
tained show that the direct-type Galerkin-characteristics method is as accurate as conventional
schemes based on Eulerian Galerkin splitting of the governing equations. The direct-type Galerkin-
characteristic algorithm has the advantage of requiring less resources for the convection integration
than an Eulerian-based Galerkin splitting method, typical of those widely used in Eulerian splitting
algorithms for the incompressible Navier–Stokes equations. This fact, as well as its favourable
stability properties, make it an attractive alternative for thermal Navier–Stokes solvers based on
Galerkin-characteristic splitting.

Future work will concentrate on developing efficient solver for the associated linear systems and
extension of these techniques to natural and mixed convection flows in three-space dimensions.

APPENDIX A

In this appendix we give a brief formulation of the Eulerian-based Galerkin methods used in the
current work for comparison reasons.

A.1. Eulerian-based Galerkin projection (EGPR) scheme

Given the solution {un, T n, pn} at time tn , the solution {un+1, T n+1, pn+1} is computed as follows:

1. Solve for ūn+1

ūn+1 − un

�t
+ E(u∗, ūn+	)+ 
∇ pn − Pr�ūn+	 = Pr Ra T ∗e in �

ūn+1 = 0 on �
(A1)

2. Solve for p̄ and un+1

un+1 − ūn+1

�t
+∇ p̄= 0 in �

∇ · un+1 = 0 in �

n · ∇un+1 = 0 on �

(A2)
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3. Solve for T n+1

T n+1 − T n

�t
+ un+1 · ∇T n+	 − �T n+	 = 0 in �

T n+1 = TD on �D

n · ∇T n+1 = 0 on �N

(A3)

4. Update pn+1

pn+1= 
pn + (1+ 
) p̄

The discretization for the convection term, E(u, v), is given by

E(u, v)= (u · ∇)v+ 1
2 (∇ · u)v (A4)

Here, T n+	 and ūn+	 are defined as

T n+	= 	T n+1 + (1− 	)T n, ūn+	= 	ūn+1 + (1− 	)un

whereas, T ∗ and u∗ are given by

T ∗ = 3
2 T

n − 1
2 T

n−1, u∗ = 3
2 u

n − 1
2 u

n−1

In our implementation, we used 
= 1, 	= 1
2 and a pressure-Poisson problem of the form (20) is

solved for p̄. Details on standard projection methods can be found in [24, 27].
A.2. Eulerian-based Galerkin splitting (EGS2) scheme with two stages

Given the solution {un, T n, pn} at time tn , the solution {un+1, T n+1, pn+1} is computed as follows:

1. Solve

un+	 − un

	�t
+ E(u∗,un)+∇ pn+	 − �Pr�un+	 = �Pr�un + Pr Ra T ∗e

∇ · un+	 = 0 in �

un+	 = 0 on �

(A5)

2. Solve

un+1 − un+	

(1− 	)�t
+ E(u∗,un+	)+∇ pn+1 − �Pr�un+1 = �Pr�un+	 + Pr Ra T ∗e

∇ · un+1 = 0 in �

un+1 = 0 on �

(A6)

3. Solve (A3) to update T n+1.
The order of accuracy in EGS2 scheme is determined by the selection of parameters 	, � and �.
A simple selection leading to a second-order accurate scheme is 	= �= �= 1

2 , compare [17, 28]
for more details.
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A.3. Eulerian-based Galerkin splitting (EGS3) scheme with three stages

Given the solution {un, T n, pn} at time tn , the solution {un+1, T n+1, pn+1} is computed as follows:

1. Solve

un+	 − un

	�t
+ E(u∗,un)+ ∇ pn+	 − �Pr�un+	= �Pr�un + Pr Ra T ∗e

∇ · un+	= 0 in � (A7)

un+	= 0 on �

2. Solve

un+1−	 − un+	

(1− 2	)�t
+ E(u∗,un+1−	)+ ∇ pn+	 − �Pr�un+1−	= �Pr�un+	 + Pr Ra T ∗e

un+1−	= 0 on �

(A8)

3. Solve

un+1 − un+1−	

	�t
+ E(u∗,un+1−	)+∇ pn+1 − �Pr�un+1= �Pr�un+1−	 + Pr Ra T ∗e

∇ · un+1= 0 in � (A9)

un+1= 0 on �

4. Solve (A3) to update T n+1.
Here, the solution u∗ is defined as

u∗ = 2	− 1

	
un + 1− 	

	
un+	

In our computations, we set 	= 1− 1/
√
2, �= (1− 2	)/(1− 	) and �= 1− �= 	/(1− 	). This

selection yields a second-order accurate scheme and has been studied in [17, 24, 29] among others.
Note that, the integration of Equations (A1)–(A9) for triangular elements is easy and described in
many text books, compare [18] among others.

ACKNOWLEDGEMENTS

M. El-Amrani acknowledges the support from Universidad Rey Juan Carlos (Grant no. GDV-04-3) for
his visit to Technomathematics Group in Kaiserslautern University during which, part of this work
was performed. The partial support for M. Seaı̈d by the German Research Foundation (DFG) is also
acknowledged.

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 53:1819–1845
DOI: 10.1002/fld



1844 M. EL-AMRANI AND M. SEAÏD
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7. Süli A, Ware E. A spectral method of characteristics for hyperbolic problems. SIAM Journal on Numerical
Analysis 1991; 28:423–445.

8. El-Amrani M, Seaı̈d M. Weakly compressible and advection approximations of incompressible viscous flows.
Communications in Numerical Methods in Engineering 2006; 22:831–847.

9. Seaı̈d M. On the quasi-monotone modified method of characteristics for transport-diffusion problems with reactive
sources. Journal of Computational Methods and Applied Mathematics 2002; 2:186–210.

10. Seaı̈d M. Semi-Lagrangian integration schemes for viscous incompressible flows. Journal of Computational
Methods and Applied Mathematics 2002; 4:392–409.

11. Roberts PH. Convection in horizontal layers with internal heat generation: theory. Journal of Fluid Mechanics
1967; 30:33–49.

12. Jaluria Y. Natural Convection Heat and Mass Transfer. Pergamon Press: Oxford, 1980.
13. Bercovier O, Pironneau M. Error estimates for finite element solution of the Stokes problem in the primitive

variables. Numerische Mathematik 1979; 33:211–224.
14. Verfürth R. Error estimates for a mixed finite element approximation of the Stokes equation. RAIRO-Analyse

Numerique 1984; 18:175–182.
15. Allievi A, Bermejo R. A generalized particle search-locate algorithm for arbitrary grids. Journal of Computational

Physics 1997; 132:157–166.
16. Seaı̈d M, El-Amrani M. Lagrange–Galerkin method for unsteady free surface water waves. Computing and

Visualization in Science 2006, in press.
17. Dean R, Glowinski EJ. On some finite elements methods for the numerical simulation of incompressible viscous

flow. In Incompressible Computational Fluid Dynamics, Gunzburger MD, Nicolaides RA (eds). Cambridge
University Press: Cambridge, 1993.

18. Johnson C. Numerical Solution of Partial Differential Equations by the Finite Element Method. Cambridge
University Press: Cambridge, London, 1987.

19. De Valhl Davis D. Natural convection of air in a square cavity: a benchmark solution. International Journal for
Numerical Methods in Fluids 1983; 3:249–264.

20. Manzari MT. An explicit finite element algorithm for convective heat transfer problems. International Journal
for Numerical Methods in Heat and Fluid Flow 1999; 9:860–877.

21. Mayne DA, Usmani AS, Carpper M. h-adaptive finite element solution of high Rayleigh number thermally driven
cavity problem. International Journal for Numerical Methods in Heat and Fluid Flow 2000; 10:598–615.

22. Wan DC, Patnaik SV, Wei GW. A new benchmark quality solution for the buoyancy-driven cavity by discrete
singular convolution. Numerical Heat Transfer, Part B 2001; 40:199–228.
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